
A language and Algorithm for Automatic Merging of Ontologies

Abstract

Nowadays, most of the important information

resources that the people require are available

through the Internet. The use of several sources in the

Internet requires merging the information into a

knowledge base in a reasonable way. We will use an

ontology, an information technology that manages this

knowledge in computers.

Merging is an important task and many languages

and tools have been developed to describe and process

Internet content but the current languages

(DAML+OIL, RDF, OWL, etc.) lack a complete

expressivenes. For this reason, we present two

important improvements to facilitate knowledge

interchange: 1) The OM (Ontology Merging) Notation

that provides substantial improvements to these

languages and 2) The OM Algorithm, that is totally

automatic in comparison with others (Prompt,

Chimaera, OntoMerge, FCA-Merge, IF-Map and ISI)

where the user manually solves the most important

problems found in the merging.

1. Introduction

These days computers are not anymore isolated

devices but they are important entry points in the

world-wide network that interchanges knowledge and

carry out business transactions. Nowadays, using

Internet to get data, information and knowledge

interchange is a business and an academic need.

Despite the facilities to access Internet, people face the

problem of heterogeneous sources, because there are

no suitable standards in knowledge representation. This

paper addresses this need of businesses and academia.

Many answers that people require involve accessing

several sources in the Internet, which are later manually

merged in a “reasonable” way. Merging the

information is an important task. Many languages and

tools (DAML+OIL [5], RDF [8] and OWL [12]) have

been developed to describe and process Internet

content but, unfortunately, they lack enough

expressiveness to detail knowledge representation.

It is required that the computer deciphers the

information (said, in a document written in a natural

language) and converts it to a suitable notation (its

knowledge base) that preserves relevant knowledge.

This knowledge base can be an ontology. An ontology

manages the knowledge through nodes that are joined

through relations, to describe a knowledge domain.

Current works that merge ontologies (Prompt [13],

Chimaera [11], OntoMerge [6], FCA-Merge [9] and If-

Map [14]) rely on the user to solve the most important

problems found in the process: inconsistencies and

adequate knowledge extraction. This paper describes

two important contributions to obtain better advantage

of the Web resources:

1) A new notation to represent knowledge using

ontologies, called OM (Ontology Merging)

Notation, and

2) An automatic algorithm to merge ontologies,

called OM Algorithm.

The OM notation provides several improvements to

current languages that define ontologies. Two of

them are: (a) a new type of relation called Partition;

(b) a node or concept can also be defined as a

relation.

Likewise, the merging algorithm that we will

explain is totally automatic. This algorithm solves

by itself all the problems found in the process. That

is to say, the user does not take part in the process.

2. OM Notation

In the context of sharing knowledge, ontologies

provide a clear, syntactic and formalized structuring of

a set of nodes also called concepts that are related to

each other, under a knowledge domain and that is

common to many people and machines.

OM Notation represents ontologies through a

structural design with labels similar to XML, these

labels identify the description of the concepts and their

relations. The labels and their descriptions are shown in

table 1.

Binary and n-ary relations are described in OM

Notation. That is, a relation can have several values

and these can be concepts. For example, the concept

Zebra has a relation Color that is connected to two

elements White and Black.

Table 1 Labels used in the OM Notation.

<concept> c </concept> Where c represents the

name of the concept.

<language> l </language> Where l represents the

language in which the

words are defined.

<word>w1,w2…wn</word> Where w1,w2…wn

represent the words that

describe the concept c.

<arity> a </arity> Where a is a positive

number that describes the

arity of the concept c.

<relation> n = v </relation> Where n represents the

name and v represents the

value of the relation. The

value n and v are concepts.

v can be a list if the

relation has several values.

<part> c </part> The concept that contains

this relation is part of the

concept c.

<member> c </member> The concept that contains

this relation is member of

the concept c.

<subset> c </subset> The concept that contains

this relation is a subset of

the concept c.

<type> c </type> The concept that contains

this relation is a type of the

concept c.

The relations are properties or characteristics of the

node or concept where they are defined. An example of

this is the relation Eat, shown in figure 1. Other

relations exist, such as the hyponymous relation, that

are expressed through nested concepts. For example,

plant is a subset of physical_object.

Relations are implicit or explicit. The implicit

relation indicates a structural relation (parent-son). For

example, the relation “part of” exists between

holonymous and meronymous sets.

A set is holonymous of another when its semantic

notion represents the whole of an object; therefore

bicycle is holonymous of handle-bar. A set is

Meronymous when it represents a part of an object;

therefore handle-bar is meronymous of bicycle.

Other implicit relations exist, such as:

Hyperonymous and Hyponymous, where a term is

hyperonymous of another if the meaning of the first

includes the second concept.

Figure 1. Representation of an ontology in OM Notation.

An ontology with nodes and relations is shown in

the figure 2. Circles and arrows are nodes and relations

respectively.

Figure 2 Graphical representation of an ontology

With the relation “part of.”

Other implicit relation is “type of.” This is the same

that “subset”. It is not shown in this paper.

The explicit relations provide additional semantics

to the nodes, describing properties, characteristics or

actions that distinguish a concept from others. For

example, the relation activity between Port of Salina

Cruz and Commercial activity, Turistic activity and

Fishing activity are shown in figure 3. Other examples

are presented here:

1. Apple Color Yellow

2. Apple Form Round

3. Cat Drinks Milk

2.1. Relation of type Partition

A Partition of a set S is a collection of subsets of S

such that whatever two elements of this collection are

mutually exclusive and all of them are collectively

exhaustive.

Partitions are not represented in languages [5], [8]

and [12]. Nevertheless, we represent partitions in the

following way:

Partition=nomPart{range1:value1; … rangen:valuen}

Where nomPart represents the name of partition,

range is the characteristic that distinguishes this set of

other sets in the partition. The range can be an interval,

a list of elements or simply a character. The value

represents the value of the range, the name of interval,

a list or a character. This value can be a node or

concept. For example:

<relation>

Partition=age {0<age<=1:baby;1<age<=10:child;

10<age<=13:teenager;13<age<18:young;18<=age<40:

adult; 40<=age<60: mature; 60<=age: old}

</relation>

The graphic representation of a partition is shown in

figure 3; the small, black circle represents the partition.

Figure 3 Graphical representation of a partition

Partitions are a form of classifying a concept, to be able

to infer on this later. The inference from partitions is

not a subject of paper.

2.2. A concept can be a relation

Binary relations are represented as follows:

r(Cname, Cvalue)

Where, r represents the name of relation, Cname

represents the name of the concept of the relation, Cvalue

represents the concept value of the relation. An

example is:

Mother (Mary Ball Washington, George Washington)

Mary Ball Washington is mother of George

Washington, but Mother can be a concept that contains

more information of the meaning of Mother and other

concepts related to this. Other contributions exist but

will not be explained in this brief space.

3. OM Algorithm for automatic merging of

ontologies

Current works that merge ontologies ([6], [9], [11],

[13] and [14]) need the intervention the user for this

important process. Our OM algorithm is the unique

(until now) because it merges ontologies in an

automatic form. OM executes the following general

steps:

Given three ontologies A, B and C, and concepts a, b, c

that belongs to A, B and C respectively:

1. For each a  A, OM obtains b = sim(a,B), the

concept in B most similar to a, as well as sv,

the similarity value between a and b [1].

1.a. If sv > 0, we will use the b obtained in (1) in

order to merge a and b obtaining c = ext(a,b), where

ext is explained below;

1.b. If sv = 0, this means a has no similar concept

in B, therefore concept a is added to the new ontology

C.

2. C, the resulting or merged ontology, is

computed as: C = {c| c is obtained in (1.a)} 

{a: sim(a,B) = 0}  {b:sim(b,A) = 0}. C

consists of all the c’s obtained in (1.a), plus all

“unique” a’s that have no similar concepts in

B, plus all “unique” b’s that have no similar

concepts in A.

The function sim(concept, ontology) of the algorithm

COM [1] is a similarity search function that takes the

concept and looks for its more similar concept in the

ontology, giving back the most similar concept and a sv

(similar value) with value between 0 and 1.

The function ext(a, b) of the OM Algorithm [3] extends

a by adding to it, the relations of b that a lacks, and

enriches those relations in a that are synonymous with

their equivalent relations in b. In this step,

inconsistencies are detected between names and values

of a relation. An inconsistency is a fact of the ontology

B that contradicts a fact of the ontology A. More on [7].

In the process of merging ontologies the following

cases appear.

3.1. Verification of the arity in a relation

Remember that a relation in OM Notation can also

be a concept. The arity of a relation is the number of

values that the relation can take. If the relation takes

only a value it is said that it is mono-valuated arity. For

example, the arity of relations Mother and Father is

mono-valuated; because a person can have only one

Mother and only one Father.

A relation is a multi-valuated arity if it can take several

values. For example, the political position that a person

can have. If rA (Cname, Cvalue) = rB(Cname, C’value), where

the index A in rA means “from the ontology A”, the OM

Algorithm verifies the arity of relation rA before

copying the value C’value to the resulting ontology. If

this relation is a multi-valuated arity, the resulting

ontology receives the new value; else, it may be that

Cvalue = C’value, no copy is performed; else (if Cvalue 

C’value), OM tries to solve the problem [a unary relation

having two distinct values] using the Confusion Theory

[2].

3.2. Union (addition) of a new relation

The addition of a new relation in A to the resulting

ontology occurs when the name and value of the

relation in A are different from the names and values of

all the relations in B, that is to say; they are totally

different concepts and they aren’t synonymous. In this

case, the names and values of these relations are added

to the resulting ontology.

3.3. Union of a relation with elements that are

synonymous

In order to know if a concept a  A has a most

similar (synonymy) concept b  in B, OM applies

COM [1] Algorithm. COM returns b, the most similar

concept, a similarity value sv. If sv  [0.8, 1], b is

considered synonym of a. In this case, ext enriches a

with suitable relations and words from b, as explained

above.

Example. Given the relation in A: Surface (Oaxaca,

Surface of Oaxaca) and the relation in B: Territorial

extension (Oaxaca, Territorial extension of Oaxaca),

we want to merge them. To do this, sim (Surface, B) is

applied. This function gives back sv = 1 with the

concept Territorial extension. Thus, OM does not fuse

both relations but it enriches the relation in A, which is

Surface, with the new words and properties of

Territorial extension in B, copying the enriched

relation to the resulting ontology C.

3.4. Confusion in the name of relations

During the copy of the relation rA, it is possible that

there is no similar relation in B, but that another name

rB exists in B with the same value as rA has in A. The

confusion arises when both relations rA y rB share the

same value. The OM Algorithm looks for the

synonymy between the names of relations (it could be

that rA and rB are synonyms, although they have

different names); that is, it applies COM to the names

of the involved concepts rA and rB. This step is applied

when the relations are concepts. If COM returns sv

between 0.8 and 1, then they are synonyms, otherwise

they are not. Other forms to find the synonymy between

the relations, are not explained here due to brevity. If

they are not synonymous, OM solves the problem using

Confusion [2]. For example:

Given a relation rA  A = Hydrology (Oaxaca, Main

river of Oaxaca), and rB  B = River (Oaxaca, Main

river of Oaxaca). We see that rA and rB have the same

values, but different names, and they are not synonyms.

To solve this, a hierarchy of concepts is used where the

names of the relations are represented. Figure 4 shows

this hierarchy. In the hierarchy the number of levels is

obtained. It is to say, level of the depth is 2. The value

of the Confusion [2] conf(r, s) is obtained by counting

the descending links in the path from r to s, and

dividing by h, the height of the hierarchy (deepest

number of levels). Thus, conf(River, Hydrology) = 0/2.

Whereas conf (Hydrology, River) = 1/2 = 0.5. OM

selects the lowest value, 0 in this case, so OM chooses

0 and uses River, the most specific concept according

to the hierarchy. Consequently, C is enriched with

River (Oaxaca, Main river of Oaxaca).

Figure 4 The Confusion of using River instead of Hydrology

is 0. This is shown in a), and the Confusion of using

Hydrology instead of River is 0.5. This is shown in b)

3.5. Confusion in the value of the relations

 Given two equal relations rA and rB, but their values

vA and vB (in A and B, respectively) are different, the

arity of the relation is verified. If it is mono-valuated,

the Confusion algorithm [2] is applied to vA and vB,

using the same procedure in 3.4, but over the values.

Example: given the relation rA = Birthplace (Benito

Juárez, San Pablo Guelatao), and rB = Birthplace

(Benito Juárez, México), the arity of rA is checked. It is

mono-valued (impossible to be born in two places,

unless they are synonyms or one is a “subset” or “part

of” the other). Hence, OM looks for the synonymy of

San Pablo Guelatao and Mexico (could it be that San

Pablo Guelatao is just a synonym for Mexico?). Not

true. Therefore, OM computes conf(San Pablo

Guelatao, Mexico) = 0/5 and conf(Mexico, San Pablo

Guelatao) = 3/5. The result is min(0, 3/5) = 0, as figure

5 shows.

Figure 5. Graphical representation of the hierarchy that

indicates the number of levels.

Therefore OM decides to conserve the most specific

value, and it adds to C the relation rA = Birthplace

(Benito Juárez, San Pablo Guelatao) in A.

3.6. Partitions that must not be merged

 If the names of the partitions in A and B are equal or

synonymous and the ranges also are equal, but the

values of these are different, OM recognizes the values

of the ranges as synonymous, enriching the value of the

partition in A with the values of the partition in B. That

is to say, copies the partition in A into C, and

complements these values (of A) with the words or

concepts in B.

3.7 Verification of nested relations

 During of fusion of ontologies, nested relations are

also copied. OM expunges from the resulting ontology,

redundant relations. These relations arise when three

concepts in C exist related in certain way. For example,

c1C, c2C y c3C with the following relations: c1C  c2C,

c2C  c3C and c1C  c3C; the redundant relation is: c1C

 c3C. Therefore, OM eliminates it from ontology C.

The redundant relations do not only exist in those of

type <subset>, also in those of type <part> and

<member>. Example: Figure 6 shows two ontologies A

and B that merge to obtain C. The arrows represent the

similarity between the source concept in A (where the

arrow starts) towards the target concept in B (where the

arrow arrives). In the Figure 6 it is possible to observe

that the concepts Turtle criptodira in A and Turtle

pleurodira in A have Turtle as their parent, but in B

Turtle is the grandparent of them.

Figure 6. A and B ontologies with the relations in Turtle that

it will generate nested relation

Figure 7 shows the result of the merge into ontology C,

where the redundant relation subset between the

concepts criptodira turtle and pleurodira turtle has

been eliminated.

Figure 7 Graphical representation of an ontology with a

nested relation.

3.8 Contributions of the OM Algorithm

1. Totally automatic, requires no human

intervention.

2. It handles partitions as well as subsets.

3. It handles nodes (concepts) in an ontology that

are “shallowly” described by just a word, a

word phrase or a set of them.

4. Relation among nodes can also be concepts

(that is, they can be nodes).

5. It detects inconsistencies (contradictions) in

the knowledge in ontology A versus the

knowledge in B, using inconsistency

measurements [7] and confusion [2].

6. It solves some of the detected contradictions

in (5), through inconsistency measurement [7].

3. Tests on real cases

OM has merged ontologies in the domain of

geographic zones, description of animals, biographies

and description of tools and products. The ontologies

were obtained manually from several documents

collected from the Web, describing the same topic

(turtles, say) in different manners. The obtained

ontologies were merged (automatically) by OM.

The validation of results has been made manually; we

have found that OM produces very acceptable results.

The work herein reported is a summary of the Ph D.

thesis [3] of one of the authors, and uses COM, a

software [1] that, given a concept cA in ontology A

finds the most similar concept cB in ontology B, as well

as its similarity value sv.

5. Conclusion

A notation has been created to define ontologies. This

notation possesses some improvements with respect to

existing ontology languages.

OM, an algorithm to fuse ontologies has been

implemented and tested; it tries to preserve the

semantic of the source ontologies. It detects the

inconsistencies during the merge and it solves them.

OM works totally automatic, this is a great

improvement to the current fusion algorithms, since

these make the fusion in a semi-automatic form. That

is, the user carries out the important points of the

fusion. The OM notation and algorithm are part of the

answer to the great necessity to give the computer (as

an important entry point to the Web) the ability to

accumulate knowledge and make business transactions

without human intervention.

6. References

[1] A. Guzmán and J. Olivares, “Finding the Most Similar

Concepts in two Different Ontologies”, Lecture Notes in

Artificial Intelligence LNAI 2972, Springer-Verlag. 129-138.

ISSN 0302-9743, 2004.

[2] A. Guzmán and S. Levachkine, “Hierarchies Measuring

Qualitative Variables”, Lecture Notes in Computer Science

LNCSW 2945, Computational Linguistics and Intelligent

Text Processing, Springer-Verlag. 262-274, ISSN 0372-

9743, 2004

[3] Alma-Delia Cuevas-Rasgado. Ontology Merging using

semantic properties Ph. D. thesis in progress. CIC-IPN,

Mexico.

[4] A. Pérez , and M. C. Suárez, Evaluation of RDF[S] and

DAML+OIL Import/Export Services within Ontology

Platforms. LNAI 2972, 109-118. 2004

[5] D. Connolly, F. van Harmelen, I. Horrocks, D. L.

McGuinnes, P. F. Patel-Schneider, L. Andrea Stein,

DAML+OIL Reference description, March 2001, W3C Note

18 December 2001, http://www.w3.org/TR/2001/NOTE-

daml+oil-reference-20011218

[6] D. Dou, D. McDermott, and Peichen Qi. Ontology

Translation by Ontology Merging and Automated Reasing,

Yale University, Computer Science Departament New

Haven, CT 06520.

[7] Edith Adriana Jimenez Contreras. Quantifying

inconsistencies in sentences (facts) with symbolic values. Ph.

D. thesis in progress. CIC-IPN, México.

[8] F. Manola, E. Miller. RDF Primer. W3C

Recommendation. 10 February 2004.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[9] G. Stumme, A. Maedche. Ontology Merging for

Federated ontologies on the semantic web. Institute for

Applied Computer Science and Formal Description Method

[AIFB] University of Karlsruhe D-76128 Karlsruhe,

Germany.

[10] Knowledge Interchange Format. Draft proposed,

American National Standard [dpANS] NCITS. T2/98-004.

[11] L. Deborah McGuinness, R. Fikes, J. Rice and S.

Wilder, The Chimaera Ontology Environment Knowledge,

System Laboratory CommerceOne Stanford University,

Stanford, CA Mountain View, CA .

[12] M. K. Smith, Electronic Data System, C. Welty, IBM

Research, D. L. McGuinnes, Stanford University, OWL Web

Ontology Language Guide, W3C Recommendation. 2004.

[13] N. Fridman Now and A. Mark. PROMPT: Algoritm and

Tool for Automated Ontology Merging and Alignment,

Stanford Medical Informatics, Standford University, CA.

[14] Y. Kalfoglou and M. Schorlemmer. Information-Flow-

based Ontology Mapping. Advanced Knowledge

Technologies [AKT] Departament of Electronics and

Computer ScienceUniversity of Southamptom.

http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

